
DBToaster
Higher-Order Delta Processing for
Dynamic, Frequently Fresh Views

Yanif Ahmad
Oliver Kennedy

Christoph Koch
Milos Nikolic

Johns Hopkins
EPFL
EPFL
EPFL

University at Buffalo

1

1Thursday, August 30, 12

2

…React to Conditions in that State

…Monitor The State of the World

Realtime Monitoring Programs…

2Thursday, August 30, 12

3

Realtime Monitoring Programs are Everywhere

3Thursday, August 30, 12

Realtime Analytics
Network Monitoring

Policy Monitoring Clickstream Analysis

Algorithmic Trading

4

4Thursday, August 30, 12

Monitoring Programs

5

5Thursday, August 30, 12

Monitoring Programs

Javac

5

Problem: People write monitoring programs by hand

5Thursday, August 30, 12

Monitoring Programs

Javac
View

5

Problem: People write monitoring programs by hand

5Thursday, August 30, 12

Monitoring Programs

View

6

6Thursday, August 30, 12

Monitoring Programs

View

• An Aggregate Representation of the State of the World

• Maintained in Realtime as the State of the World Changes

• Needs to React to Changes In the World Quickly

Not just Views

6

Frequently Fresh Views

6Thursday, August 30, 12

Monitoring Programs

Javac
View

7

7Thursday, August 30, 12

Monitoring Programs

Javac
View

(The Current State of the Art)

7

7Thursday, August 30, 12

Monitoring Programs

Javac
Spec

Embedded SQL

8

8Thursday, August 30, 12

Monitoring Programs

Javac

Spec

9

9Thursday, August 30, 12

Monitoring Programs

Javac

Spec View

The DBToaster Compiler
9

9Thursday, August 30, 12

The Viewlet Transform

10

10Thursday, August 30, 12

The Viewlet Transform

Use Auxiliary Views to Speed Up View Maintenance

10

10Thursday, August 30, 12

The Viewlet Transform

Use Auxiliary Views to Speed Up View Maintenance

10

The Delta of a Query Can Be Materialized!

10Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(R.A S.C*)
FROM R, S
WHERE R.B = S.B

A Simple 2-Way Join Aggregate
11

11Thursday, August 30, 12

The Viewlet Transform

q[] SELECT SUM(R.A S.C*)
FROM R, S
WHERE R.B = S.B

:=

A Simple 2-Way Join Aggregate
11

11Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(∂A S.C*)
FROM S
WHERE = S.B

q[] +=

∂B

ON +R(∂A, ∂B):

Materialize and Incrementally Maintain The Query
12

12Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(∂A S.C*)
FROM S
WHERE = S.B

q[] +=

∂B

ON +R(∂A, ∂B):

)(

Optimize
13

13Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(∂A S.C*)
FROM S
WHERE = S.B

q[] +=

S.B∂B

ON +R(∂A, ∂B):

)(

Optimize
13

13Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(∂A S.C*)
FROM S
GROUP BY S.B

q[] += S.B
∂B

ON +R(∂A, ∂B):

)([]
,

Optimize
14

14Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(

∂A

S.C

*

)
FROM S
GROUP BY S.B

q[] +=

S.B

∂B
ON +R(∂A, ∂B):

[]

,:=

mR

[B]mR

Extract and Materialize The Delta View
15

15Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(

∂A

S.C

*

)
FROM S
GROUP BY S.B

q[] +=

S.B

∂B
ON +R(∂A, ∂B):

[]

,:=

mR

[B]mR

Extract and Materialize The Delta View
15

A Hash Map (indexed by S.B)

15Thursday, August 30, 12

The Viewlet Transform

SELECT SUM(

∂A

∂C

*

)

q[] +=

∂B

∂B
ON +R(∂A, ∂B):

[]

,+=

mR

ON +S(∂B, ∂C):

[B]mR

Incrementally Maintain The Delta View
16

16Thursday, August 30, 12

The Viewlet Transform

∂A

∂C

*q[] +=

∂B

∂B
ON +R(∂A, ∂B):

[]

+=

mR

ON +S(∂B, ∂C):

[]mR

Optimize
17

17Thursday, August 30, 12

The Viewlet Transform

∂A

∂C

*q[] +=

∂B

∂B
ON +R(∂A, ∂B):

[]

mR +=

mR

ON +S(∂B, ∂C):

∂C *q[] += ∂B[]mS
[]

∂A∂BmS +=[]

Repeat for the Other Deltas of the Query
18

18Thursday, August 30, 12

19

The Viewlet Transform

19Thursday, August 30, 12

19

• Take the Deltas

• Optimize and Materialize Them

• Take the Deltas

• Optimize and Materialize Them

• ...

The Viewlet Transform

19Thursday, August 30, 12

19

• Take the Deltas

• Optimize and Materialize Them

• Take the Deltas

• Optimize and Materialize Them

• ...

The Viewlet Transform

19Thursday, August 30, 12

Performance

20

(and how we got there)

20Thursday, August 30, 12

21

• TPC-H Workload

• Simulated Realtime Data Warehouse

• Update Stream Derived from TPC-H Gen

• Financial Benchmark

• 24 hr Trace for an Actively Traded Stock.

21Thursday, August 30, 12

TPCH: Q3
Refresh Rate

0

10,000

20,000

30,000

40,000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Naive Re-evaluation Traditional IVM DBToaster

R
e

fr
e

sh
 R

at
e

 (
tu

p
le

s/
se

c)

Fraction of Trace Completed

22

(3-Way Join)

22Thursday, August 30, 12

TPCH: Q3

CustID OrderID

Customer

Orders

Lineitem

23

23Thursday, August 30, 12

TPCH: Q3

CustID OrderID

Customer Lineitem

The Δ for Orders
23

23Thursday, August 30, 12

TPCH: Q3

CustID OrderID

Customer Lineitem

The Δ for Orders

Materialize Each Separately

23

23Thursday, August 30, 12

Financial: VWAP
Refresh Rate

0

1,000

2,000

3,000

4,000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Naive Re-evaluation Traditional IVM DBToaster

R
e

fr
e

sh
 R

at
e

 (
tu

p
le

s/
se

c)

Fraction of Trace Completed

24

(Self-join with Inequalitities)

24Thursday, August 30, 12

Financial: VWAP

25

ON +BIDS(..., ∂price, ...)

+=q[]

WHERE ∂price > b2.price

SELECT ...
FROM BIDS b2

25Thursday, August 30, 12

Financial: VWAP

26

ON +BIDS(..., ∂price, ...)

+=q[]

:=mB[]∂price

mB[]∂price

Option 1: Create a Cache (best for VWAP)

WHERE ∂price > b2.price

SELECT ...
FROM BIDS b2

26Thursday, August 30, 12

Financial: VWAP

27

ON +BIDS(..., ∂price, ...)

+=q[]

:=mB[]

mB[

Option 2: Defer Conditions Over Unsafe Variables

WHERE ∂price > b2.price
SELECT ...
FROM BIDS b2

]
SELECT ...
FROM

27Thursday, August 30, 12

Financial: Pricespread
Refresh Rate

0

10,000

20,000

30,000

40,000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Naive Re-evaluation Traditional IVM DBToaster

R
e

fr
e

sh
 R

at
e

 (
tu

p
le

s/
se

c)

Fraction of Trace Completed

28

(Cross Product ‘variance’ Computation)

28Thursday, August 30, 12

Financial: Pricespread

29

• 2-way Cross-Product with Nested Aggregates

• IVM can’t do better than Repeated re-evaluation.

• DBToaster wins on Data Representation Trickery!

29Thursday, August 30, 12

Financial: Pricespread

Sum
<>; (R.A-S.B)

(R ⋈ S)

30

30Thursday, August 30, 12

Financial: Pricespread

Sum
<>; (R.A-S.B)

(R ⋈ S)

Sum
<>; R.A

(R ⋈ S) Sum
<>; -S.B

(R ⋈ S)U

30

30Thursday, August 30, 12

Financial: Pricespread

Sum
<>; (R.A-S.B)

(R ⋈ S)

Sum
<>; R.A

(R ⋈ S) Sum
<>; -S.B

(R ⋈ S)U

Sum
<>; R.A

(R) Sum
<>; 1

(S)⋈

U
Sum

<>; 1
(R) Sum

<>; S.B
(S)⋈

30

30Thursday, August 30, 12

DBToaster vs Commercial Engines

1

10

100

1000

10000

100000

1000000

Q3 Q11 Q17 Q18 Q22 SSB4 BSV BSP AXF PSP MST VWAP

DB X SP Y DBToaster

TPC-H Schema Financial Benchmark

R
ef

re
sh

 R
at

e
(t

up
le

s/
se

c)

31

31Thursday, August 30, 12

DBToaster vs Commercial Engines

1

10

100

1000

10000

100000

1000000

Q3 Q11 Q17 Q18 Q22 SSB4 BSV BSP AXF PSP MST VWAP

DB X SP Y DBToaster

DBToaster is consistently 3 OOM better!

R
ef

re
sh

 R
at

e
(t

up
le

s/
se

c)

31

31Thursday, August 30, 12

Limitations of
Commercial Systems

• OLTP IVM is not designed for aggregating
Low-Latency/Single-Tuple Updates.

• OLTP IVM doesn’t support our full query
workload.

• Stream Processors are not designed for
rapidly changing long-lived data.

32

32Thursday, August 30, 12

Limitations of
Commercial Systems

• OLTP IVM is not designed for aggregating
Low-Latency/Single-Tuple Updates.

• OLTP IVM doesn’t support our full query
workload.

• Stream Processors are not designed for
rapidly changing long-lived data.

DBToaster opens entirely new application domains!
32

32Thursday, August 30, 12

Conclusions

• The Viewlet Transform generates auxiliary
views that make incremental maintenance fast.

• Materializing only part of an auxilliary view can
sometimes be faster.

• DBToaster is commonly 3 OoM faster than
Commercial Systems.

33

33Thursday, August 30, 12

Conclusions

• The Viewlet Transform generates auxiliary
views that make incremental maintenance fast.

• Materializing only part of an auxilliary view can
sometimes be faster.

• DBToaster is commonly 3 OoM faster than
Commercial Systems.

33

Download Now: http://www.dbtoaster.org

33Thursday, August 30, 12

Thanks!

34

Download Now: http://www.dbtoaster.org

?

Oliver Kennedy Yanif Ahmad Christoph Koch Milos Nikolic

Daniel Lupei Amir Shaikhha

?

Andres Nötzli

34Thursday, August 30, 12

