DBToaster

Higher-Order Delta Processing for Dynamic, Frequently Fresh Views

Yanif Ahmad Johns Hopkins

Oliver Kennedy EPFL University at Buffalo

Christoph Koch EPFL

Milos Nikolic EPFL

ı

Realtime Monitoring Programs...

... Monitor The State of the World

...React to Conditions in that State

Realtime Monitoring Programs are Everywhere


```
(al) at (al) a
```


Problem: People write monitoring programs by hand

Problem: People write monitoring programs by hand

- An Aggregate Representation of the State of the World
- Maintained in Realtime as the State of the World Changes
- Needs to React to Changes In the World Quickly

Not just Views

Frequently Fresh Views

(The Current State of the Art)

The DBToaster Compiler

Use Auxiliary Views to Speed Up View Maintenance

Use Auxiliary Views to Speed Up View Maintenance

The Delta of a Query Can Be Materialized!

```
SELECT SUM(R.A * S.C)
FROM R, S
WHERE R.B = S.B
```

A Simple 2-Way Join Aggregate

```
q[]:= SELECT SUM(R.A * S.C)
FROM R, S
WHERE R.B = S.B
```

A Simple 2-Way Join Aggregate

```
ON +R(\partial A, \partial B):

q[] += SELECT SUM(\partial A * S.C)

FROM S

WHERE \partial B = S.B
```

Materialize and Incrementally Maintain The Query

```
ON +R(\partial A, \partial B):

q[] += \partial A * SELECT SUM(S.C)

FROM S

WHERE \partial B = S.B
```

Optimize

13

Optimize

13

Optimize

14

```
ON +R(\partial A, \partial B):
q[] += \partial A * mR[\partial B]
```

```
mR[B] := SELECT S.B, SUM(S.C)

FROM S

GROUP BY S.B
```

Extract and Materialize The Delta View

```
ON +R(\partial A, \partial B):
q[] += \partial A * mR[\partial B]
```

```
A Hash Map (indexed by S.B)

mR[B] := SELECT S.B, SUM(S.C)

FROM S

GROUP BY S.B
```

Extract and Materialize The Delta View

```
ON +R(\partial A, \partial B):

q[] += \partial A * mR[\partial B]

ON +S(\partial B, \partial C):
```

 $mR[B] += SELECT \partial B, SUM(\partial C)$

Incrementally Maintain The Delta View

```
ON +R(\partial A, \partial B):
q[] += \partial A * mR[\partial B]
```

ON +S(
$$\partial$$
B, ∂ C):

mR[∂ B] += ∂ C

Optimize

17

```
ON +R(\partial A, \partial B):

q[] += \partial A * mR[\partial B]

mS[\partial B] += \partial A

ON +S(\partial B, \partial C):

mR[\partial B] += \partial C

q[] += \partial C * mS[\partial B]
```

Repeat for the Other Deltas of the Query

- Take the Deltas
 - Optimize and Materialize Them
 - Take the Deltas
 - Optimize and Materialize Them

• ...

- Take the Deltas
 - Optimize and Materialize Them
 - Take the Deltas
 - Optimize and Materialize Them

• ...

Performance

(and how we got there)

- TPC-H Workload
 - Simulated Realtime Data Warehouse
 - Update Stream Derived from TPC-H Gen

- Financial Benchmark
 - 24 hr Trace for an Actively Traded Stock.

TPCH: Q3 Refresh Rate

(3-Way Join)

Thursday, August 30, 12

22

TPCH: Q3

TPCH: Q3

The Δ for Orders

23

TPCH: Q3

Materialize Each Separately

The Δ for Orders

Financial: VVVAP Refresh Rate

(Self-join with Inequalitities)

Thursday, August 30, 12

24

Financial: VVAP

```
ON +BIDS(..., ∂price, ...)

q[] += SELECT ...

FROM BIDS b2

WHERE ∂price > b2.price
```

Financial: VVAP

```
ON +BIDS(..., ∂price, ...)

q[] += mB[∂price]
```

```
mB[∂price] := SELECT ...

FROM BIDS b2

WHERE ∂price > b2.price
```

Option I: Create a Cache (best for VWAP)

Financial: VVAP

```
ON +BIDS(..., ∂price, ...)

q[] += SELECT ...

FROM mB[]

WHERE ∂price > b2.price

mB[] := SELECT ...

FROM BIDS b2
```

Option 2: Defer Conditions Over Unsafe Variables

Financial: Pricespread Refresh Rate

(Cross Product 'variance' Computation)

Thursday, August 30, 12

28

- 2-way Cross-Product with Nested Aggregates
 - IVM can't do better than Repeated re-evaluation.
- DBToaster wins on Data Representation Trickery!

$$Sum_{\langle \rangle; (R.A-S.B)}(R \bowtie S)$$

$$Sum_{\langle \rangle; (R.A-S.B)}(R \bowtie S)$$

DBToaster vs Commercial Engines

31

DBToaster vs Commercial Engines

DBToaster is consistently 3 OOM better!

Limitations of Commercial Systems

- OLTP IVM is not designed for aggregating Low-Latency/Single-Tuple Updates.
- OLTP IVM doesn't support our full query workload.
- Stream Processors are not designed for rapidly changing long-lived data.

Limitations of Commercial Systems

- OLTP IVM is not designed for aggregating Low-Latency/Single-Tuple Updates.
- OLTP IVM doesn't support our full query workload.
- Stream Processors are not designed for rapidly changing long-lived data.

DBToaster opens entirely new application domains!

Conclusions

- The Viewlet Transform generates auxiliary views that make incremental maintenance fast.
- Materializing only part of an auxilliary view can sometimes be faster.
- DBToaster is commonly 3 OoM faster than Commercial Systems.

Conclusions

- The Viewlet Transform generates auxiliary views that make incremental maintenance fast.
- Materializing only part of an auxilliary view can sometimes be faster.
- DBToaster is commonly 3 OoM faster than Commercial Systems.

Download Now: http://www.dbtoaster.org

Thanks!

Oliver Kennedy

Yanif Ahmad

Christoph Koch

Milos Nikolic

Daniel Lupei

Download Now: http://www.dbtoaster.org