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…React to Conditions in that State

…Monitor The State of the World

Realtime Monitoring Programs…
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Realtime Monitoring Programs are Everywhere
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Realtime Analytics
Network Monitoring

Policy Monitoring Clickstream Analysis

Algorithmic Trading
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Monitoring Programs
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Monitoring Programs

Javac
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Problem: People write monitoring programs by hand
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Monitoring Programs

Javac
View
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Problem: People write monitoring programs by hand
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Monitoring Programs

View
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Monitoring Programs

View

• An Aggregate Representation of the State of the World

• Maintained in Realtime as the State of the World Changes

• Needs to React to Changes In the World Quickly

Not just Views
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Frequently Fresh Views
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Monitoring Programs

Javac
View
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Monitoring Programs

Javac
View

(The Current State of the Art)
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Monitoring Programs

Javac
Spec

Embedded SQL
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Monitoring Programs

Javac

Spec
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Monitoring Programs

Javac

Spec View

The DBToaster Compiler
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The Viewlet Transform
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The Viewlet Transform

Use Auxiliary Views to Speed Up View Maintenance
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The Viewlet Transform

Use Auxiliary Views to Speed Up View Maintenance
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The Delta of a Query Can Be Materialized!
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The Viewlet Transform

SELECT SUM(R.A S.C* )
FROM R, S
WHERE R.B = S.B

A Simple 2-Way Join Aggregate
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The Viewlet Transform

q[] SELECT SUM(R.A S.C* )
FROM R, S
WHERE R.B = S.B

:=

A Simple 2-Way Join Aggregate
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The Viewlet Transform

SELECT SUM( ∂A S.C* )
FROM S
WHERE = S.B

q[] +=

∂B

ON +R(∂A, ∂B):

Materialize and Incrementally Maintain The Query
12
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The Viewlet Transform

SELECT SUM(∂A S.C* )
FROM S
WHERE = S.B

q[] +=

∂B

ON +R(∂A, ∂B):

)(

Optimize
13
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The Viewlet Transform

SELECT SUM(∂A S.C* )
FROM S
WHERE = S.B

q[] +=

S.B∂B

ON +R(∂A, ∂B):

)(

Optimize
13
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The Viewlet Transform

SELECT SUM(∂A S.C* )
FROM S
GROUP BY S.B

q[] += S.B
∂B

ON +R(∂A, ∂B):

)( [  ]
,

Optimize
14
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The Viewlet Transform

SELECT SUM(

∂A

S.C

*

)
FROM S
GROUP BY S.B

q[] +=

S.B

∂B
ON +R(∂A, ∂B):

[  ]

,:=

mR

[B]mR

Extract and Materialize The Delta View
15
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The Viewlet Transform

SELECT SUM(

∂A

S.C

*

)
FROM S
GROUP BY S.B

q[] +=

S.B

∂B
ON +R(∂A, ∂B):

[  ]

,:=

mR

[B]mR

Extract and Materialize The Delta View
15

A Hash Map (indexed by S.B)
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The Viewlet Transform

SELECT SUM(

∂A

∂C

*

)

q[] +=

∂B

∂B
ON +R(∂A, ∂B):

[  ]

,+=

mR

ON +S(∂B, ∂C):

[B]mR

Incrementally Maintain The Delta View
16

16Thursday, August 30, 12



The Viewlet Transform

∂A

∂C

*q[] +=

∂B

∂B
ON +R(∂A, ∂B):

[  ]

+=

mR

ON +S(∂B, ∂C):

[ ]mR

Optimize
17
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The Viewlet Transform

∂A

∂C

*q[] +=

∂B

∂B
ON +R(∂A, ∂B):

[  ]

mR +=

mR

ON +S(∂B, ∂C):

∂C *q[] += ∂B[  ]mS
[ ]

∂A∂BmS +=[ ]

Repeat for the Other Deltas of the Query
18
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The Viewlet Transform
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• Take the Deltas

• Optimize and Materialize Them

• Take the Deltas

• Optimize and Materialize Them

• ...

The Viewlet Transform
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• Take the Deltas

• Optimize and Materialize Them

• Take the Deltas

• Optimize and Materialize Them

• ...

The Viewlet Transform
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Performance
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(and how we got there)
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• TPC-H Workload

• Simulated Realtime Data Warehouse

• Update Stream Derived from TPC-H Gen

• Financial Benchmark

• 24 hr Trace for an Actively Traded Stock.
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TPCH: Q3
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(3-Way Join)
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TPCH: Q3

CustID OrderID

Customer

Orders

Lineitem
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TPCH: Q3

CustID OrderID

Customer Lineitem

The Δ for Orders
23
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TPCH: Q3

CustID OrderID

Customer Lineitem

The Δ for Orders

Materialize Each Separately
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Financial: VWAP
Refresh Rate
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(Self-join with Inequalitities)
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Financial: VWAP

25

ON +BIDS(..., ∂price, ...)

+=q[]

WHERE ∂price > b2.price

SELECT ...
FROM BIDS b2
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Financial: VWAP
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ON +BIDS(..., ∂price, ...)

+=q[]

:=mB[ ]∂price

mB[ ]∂price

Option 1: Create a Cache (best for VWAP)

WHERE ∂price > b2.price

SELECT ...
FROM BIDS b2
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Financial: VWAP

27

ON +BIDS(..., ∂price, ...)

+=q[]

:=mB[]

mB[

Option 2: Defer Conditions Over Unsafe Variables

WHERE ∂price > b2.price
SELECT ...
FROM BIDS b2

]
SELECT ...
FROM
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Financial: Pricespread
Refresh Rate
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(Cross Product ‘variance’ Computation)
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Financial: Pricespread

29

• 2-way Cross-Product with Nested Aggregates

• IVM can’t do better than Repeated re-evaluation.

• DBToaster wins on Data Representation Trickery!
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Financial: Pricespread

Sum
<>; (R.A-S.B)

(R ⋈ S)

30
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Financial: Pricespread
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<>; (R.A-S.B)

(R ⋈ S)
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<>; -S.B

(R ⋈ S)U
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Financial: Pricespread

Sum
<>; (R.A-S.B)
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DBToaster vs Commercial Engines
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DBToaster vs Commercial Engines
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DBToaster is consistently 3 OOM better!
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Limitations of 
Commercial Systems

• OLTP IVM is not designed for aggregating 
Low-Latency/Single-Tuple Updates.

• OLTP IVM doesn’t support our full query 
workload.

• Stream Processors are not designed for 
rapidly changing long-lived data.
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Limitations of 
Commercial Systems

• OLTP IVM is not designed for aggregating 
Low-Latency/Single-Tuple Updates.

• OLTP IVM doesn’t support our full query 
workload.

• Stream Processors are not designed for 
rapidly changing long-lived data.

DBToaster opens entirely new application domains!
32
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Conclusions

• The Viewlet Transform generates auxiliary 
views that make incremental maintenance fast.

• Materializing only part of an auxilliary view can 
sometimes be faster.

• DBToaster is commonly 3 OoM faster than 
Commercial Systems.
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Conclusions

• The Viewlet Transform generates auxiliary 
views that make incremental maintenance fast.

• Materializing only part of an auxilliary view can 
sometimes be faster.

• DBToaster is commonly 3 OoM faster than 
Commercial Systems.
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Download Now: http://www.dbtoaster.org

33Thursday, August 30, 12



Thanks!
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Download Now: http://www.dbtoaster.org
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